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In this paper a new method for the determination of unsteady pressure with a
tubing system is shown. The conventional methods try either to optimize the fre-
quency behaviour of the tubing system by implementing restrictors or instantaneous
jumps in the cross-sectional area or to correct the measurement by using the transfer
function of the tubing system. The new method presented here simply uses a tube
with constant, circular cross-section and solves the governing fluid-mechanic equa-
tions in the time-domain by numerically propagating in the direction of the spatial
axis. c© 1998 Academic Press

1. INTRODUCTION

To measure time-varying pressures on the surface of models in wind tunnel experiments
small pressure transducers with a sufficiently high eigenfrequency are flush-mounted on
the modelsurface. If the number of measuring points of one model is too high, one usually
uses several tubes which are connected with only one transducer successively during the
experiment by a scanivalve. In this paper we consider one of these measuring-tubes. The
point of the tube at the model surface is called pointA or entrance of the tube; the point
of the tube next to the pressure transducer is called pointB or end of the tube. The system
consisting of the measuring-tube and pressure transducer is called the tubing system.

Berg and Tijdeman [1] derived a method for calculating the transfer function of a tubing
system. The transfer function is defined as the ratio of the pressure at the end of the tube over
the pressure at the entrance of the tube in the frequency domain. If the maximum frequency
of the pressure signal is small enough compared with the acoustic eigenfrequency of the
tubing system, which corresponds to the first resonant peak of the transfer function, the
pressure at the end and the pressure at the entrance of the tube are nearly identical [2].
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The frequency range of this method is limited due to resonance effects occurring above a
certain frequency. To be able to measure signals with higher frequencies restrictors can be
implemented inside the tube [8, 5], thus flattening the first resonant peak of the transfer
function. Methods to find an effective position of restrictors have been proposed by Gumley
[3] and Holmes and Lewis [4]. Sockel and Ottitsch [7] published a paper in which the effect
of restrictors was calculated in the time-domain using the method of characteristics in its
usual time marching form. Another approach is the correction of the measured signal using
the transfer function of the tubing system [5].

In contrast to [7] the direction of the numerical solution procedure is changed in this work.
By that way an accurate time-domain method is derived for calculating the pressure at the
entrance of a tube from the measured pressure at the end of the tube for high frequencies
without the need of restrictors.

In Section 2 the problem and goal of this paper are defined. In Section 3 the assump-
tions made and the equations governing the problem are given. In Section 4 the numerical
solution method is presented and difficulties arising from the type of the stated problem
are discussed, especially the problem of stability. In Section 5 comparisons between nu-
merical and experimental results are shown. Finally the characteristics of the scheme are
summarized in Section 6.

2. PROBLEM

In Fig. 1 the problem and chosen nomenclature can be seen. Two pointsA and B are
connected by a measuring-tube of lengthL and constant, circular cross-section with internal
diameterd. The bending diameter of the flexible tube-axis isD. At B the tube is ending in
a cylindrical cavity with internal volumeV . Unsteady pressurepA in A leads to unsteady
pressurepB in B. The maximum frequency of interest ofpA is fmax. Assuming small pressure
disturbances the pressurepA shall be calculated from two given boundary conditions inB,
namely the measured pressurepB and the boundary condition representing the cavity.pB

is given in discretized form with sampling frequencyfs.
In addition to the application described above the method allows us to determine the sum

of pressures of several surfacepoints divided by the number of surfacepoints (pneumatic

FIG. 1. Problem.



            

THE DETERMINATION OF UNSTEADY PRESSURE 69

averaging [8]). If each of these points is connected by tubes of the same length and diameter
with one manifold, the method presented here yields exactly this result.

3. MATHEMATICAL FORMULATION

The geometrical assumptions concerning the tube ared/L ¿ 1 andd/D ¿ 1. The ge-
ometrical assumptions regarding the cavity are that the diameter and length of the cavity
are of the same order,V1/3/d ∼ O(1) andV1/3 fmax/a0 ¿ 1, implying spatially uniform
pressurepB in the cavity.a is the speed of sound. The index 0 indicates the undisturbed
state of the fluid. With respect to the fluid-flow we assume an ideal gas, isentropic condition,
small pressure disturbances, and axisymmetric, laminar flow. We assume spatially uniform
pressure over the tube cross-section. Energy losses atA and B and gravity are neglected.
The pressure disturbances are much smaller than the modulus of elasticity of the tube, sod
remains constant.

We define the timest = 0 andt = T as the beginning and the end of the time interval,
during which pressure is measured. The spatial pointsx = 0 andx = L are identified with
the entranceA and the endB of the tube (see Fig. 1).

Two different initial-conditions are defined. The zero initial-condition is identical with
the fluid being undisturbed fort = 0. The undisturbed state is defined byp = p0 andw = 0
in the whole tube.w is the mean velocity over the cross-section of the tube. The non-zero
initial-condition implies that these values are arbitrary fort = 0 and unknown. This is the
case if we start our recording att = 0, but we started the experiment earlier, so that waves
propagate in the system att ≤ 0 already.

We define the following dimensionless quantities (1), which are marked by ˜ ,

x̃ = x

d
, t̃ = a0t

d
, f̃ = d · f

a0
, w̃ = w

a0
, p̃ = p − p0

ρ0a2
0

, τ̃ = τ

ρ0a2
0

. (1)

τ denotes the wall shear stress inside the tube;ρ is the density of the fluid.
Under the assumptions made above the problem can be formulated by using the one-

dimensional, linearized continuity (2), the one-dimensional, linearized momentum equation
(3), and the linearized boundary condition for the cavity (4),

∂ p̃

∂ t̃
+ ∂w̃

∂ x̃
= 0 (2)

∂w̃

∂ t̃
+ ∂ p̃

∂ x̃
+ 4τ̃ = 0 (3)

w̃|x̃=L/d = 4V

πd3

dp̃

dt̃

∣∣∣∣
x̃=L/d

. (4)

τ̃ is calculated using (5) which is derived in [10] and is valid for laminar, axisymmetric
flow,

τ̃ (x̃, t̃) = 4
ν

a0d

(
2w̃(x̃, t̃) +

∫ t̃

0
W(t̃ − ũ)

∂w̃(x̃, ũ)

∂ũ
dũ

)
. (5)

ν is the kinematic viscosity of the fluid. The first term of Eq. (5) is formally identical with
the wall shear stress in the case of laminar, steady flow (Hagen–Poiseuille). Therefore the
second term of Eq. (5) is usually referred to as the unsteady friction term. It is a memory
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integral with weighting functionW for past velocity changes.W was derived by Zielke and
is given in [10] according to (6),

W(s(t̃)) =


0.282095s−0.5 − 1.25+ 1.057855s0.5

+ 0.9375s+ 0.396696s1.5 − 0.351563s2 for s < 0.02
exp(−26.3744s) + exp(−70.8493s)
+ exp(−135.0198s) + exp(−218.9216s)
+ exp(−322.5544s) for s > 0.02

(6)

with

s(t̃) = 4
ν

a0d
t̃ . (7)

Combining (2) and (3) one obtains the wave equation with a dissipative term. We see
that the problem is governed by three nondimensional physical parameters, namely the
geometrical parametersL/d =: L̃ andV/d3 =: Ṽ and the friction parameterν/(a0d) =: ψ .

4. NUMERICAL SOLUTION METHOD

The system of equations is solved by applying the method of characteristics. Equations
(2) and (3) are transformed onto the characteristic variablesξ = x̃ − t̃ andη = x̃ + t̃ . Along
the characteristic directions (8) and (9), which are straight lines, the compatibility conditions
(10) and (11) have to be satisfied,

dx̃

dt̃

∣∣∣∣
ξ = const

= + 1 (8)

dx̃

dt̃

∣∣∣∣
η = const

= −1 (9)

dp̃

dt̃

∣∣∣∣
ξ = const

+ dw̃

dt̃

∣∣∣∣
ξ = const

= −4τ̃ |ξ = const (10)

dp̃

dt̃

∣∣∣∣
η = const

− dw̃

dt̃

∣∣∣∣
η = const

= +4τ̃ |η = const. (11)

Rewriting (8) and (9) as difference equations one obtains

1̃x

1̃t
= 1, (12)

where 1̃x and 1̃t stand for the distance of grid points in thex̃- and t̃-direction. The
Courant number of the scheme is 1, therefore the shift condition is met exactly, which
guarantees maximum accuracy.

By the discretization a nondimensional numerical parameter is introduced, namely1̃t .
For practical reasons1t is chosen to be constant and equal the reciprocal of the sampling
frequency of the measured signal1t = 1/ fs and therefore1t̃ = 1/ f̃ s.

The derivative in (4) is discretized by its first order backward difference expression.
Equation (5) is discretized as

τ̃ (x̃i , t̃ j ) = 4ψ

(
2w̃(x̃i , t̃ j ) +

kend∑
k = 1

Wintek · dwdtk

)
(13)
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with

Wintek =
∫ k1t̃

(k−1)1t̃
W(t̃) dt̃, k = 1, 2, . . . (14)

and

dwdtk = (w̃(x̃i , t̃ j − (k − 1)1t̃) − w̃(x̃i , t̃ j − k1t̃))/1t̃, k = 1, 2, . . . . (15)

For the problems discussed herekend can be chosen askend ≈ 30.
The calculation is done under the assumption of the zero initial-condition. This is a

purely numerical assumption. We emphasize that this numerical initial-condition need not
be identical with the physical initial-condition, which in most practical cases will be an
unknown non-zero initial-condition. We will show later that the dependence of the solution
on the physical initial-condition decreases with time rather rapidly, if friction effects are
high enough. This is the case for usual measuring-tubes. Therefore a physical non-zero
initial-condition will pose no problem for our scheme.

4.1. Time Marching Algorithm

For a better understanding we first briefly explain the algorithm in its conventional form,
which is a time marching algorithm, although this does not work for our problem.

For “usual” hyperbolic problems the number of physical boundary conditions at each
boundary is equal to the number of characteristics pointing into the region, as time increases.
Thus the problem is well-posed [9]. In our case this would be one physical boundary
condition atA and one atB.

The principle of time marching in thẽx − t̃-plane using the method of characteristics is
shown in Fig. 2. The flowfield is calculated in an explicit way by propagating numerically

FIG. 2. Principle of time marching in thẽx − t̃-plane; regions containing correct results for (a) physical zero
initial-condition and (b) unknown physical non-zero initial-condition.
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in the direction of the time axis. The compatibility equations (10) and (11) can be written as
difference equations (16) and (17), where the indices correspond to those shown in Fig. 2,

p̃3 − p̃1 + w̃3 − w̃1 = −41̃t · τ̃1 (16)

p̃3 − p̃2 − w̃3 + w̃2 = +41̃t · τ̃2. (17)

With Eqs. (16) and (17),̃p andw̃ inside the duct are calculated. The physical boundary
conditions together with the compatibility conditions (17) and (16) are used for the deter-
mination of the unknowñp andũ at A andB, respectively.

Neglecting the memory integral in (5), ˜τ diminishes all dynamic disturbances, i.e., dis-
turbances withf̃ > 0, exponentially. We define a critical frequencyf̃ crit ,

f̃ crit =
16ψ

2π
. (18)

Frequencies higher thañf crit are damped with exp (−16ψ t̃) as time increases. The timet̃q
after which such a disturbance has decreased to less thanq times its initial amount can be
estimated,

t̃q = ln(q−1)

16ψ
. (19)

For the cases discussed here the critical frequencyf̃ crit is smaller than the maximum fre-
quency of interest̃f max. Therefore it makes sense to use (19) for an estimation of the timet̃q
of influence of disturbances, e.g., introduced by a discrepancy between the numerical and
physical initial-condition.q = 0.01 is appropriate to estimatet̃q.

On the right-hand side of Fig. 2 the regions in thex̃− t̃-plane containing correct results for
the two cases of (a) a physical zero initial-condition and (b) an unknown physical non-zero
initial-condition are shown. For usual tubing systemst̃q is sufficiently small.

4.2. Space Marching Algorithm

For the problem discussed here the time marching algorithm does not work, since we
have two boundary conditions atB, namely measured pressurepB and Eq. (4), and none at
A.

The problem is solved by changing the direction of integration. The flowfield is calculated
by propagating numerically in the direction of the spatial axis. The principle of space
marching in thẽx − t̃-plane using the method of characteristics is shown in Fig. 3.

The compatibility equations (10) and (11) can be written as difference equations (20) and
(21), where the indices correspond to those shown in Fig. 3,

p̃1 − p̃3 + w̃1 − w̃3 = − 41̃t · τ̃1 (20)

p̃3 − p̃2 − w̃3 + w̃2 = + 41̃t · τ̃2. (21)

The numerical procedure starts with the calculation of ˜wB from p̃B using (4) and of ˜τB

using (5). After that the following two steps, defining an explicit scheme, are repeated until
A is reached: First̃p andw̃ at x̃− = x̃ − 1̃x are calculated using (20) and (21). Secondly ˜τ

at the new spatial coordinate is determined using (5).
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FIG. 3. Principle of space marching in thex̃ − t̃-plane; regions containing correct results for (a) physical zero
initial-condition and (b) unknown physical non-zero initial-condition.

It is obvious that the field of the calculated values is limited by the characteristic line
ξ = const through point (̃L, T̃). Therefore the signal atA can be calculated only for times
within the interval [0, T̃ − L̃]. By choosingT̃ large enough this fact poses no problem.

As indicated above, on the axist̃ = 0 the numerical initial-condition is the zero initial-
condition, without taking into account the physical initial-condition. In the case of a physical
non-zero initial-condition the scheme therefore produces wrong results at all points (x̃, t̃)
under the characteristic lineη = const through point (̃L, 0). With no friction present the
scheme gives the correct result forp̃A for times in the interval [̃L, T̃ − L̃], since in this
case the above mentioned points in thex̃ − t̃-plane are not needed at all. Mathematically
speaking the calculation of̃pA in the time-interval [̃L, T̃ − L̃] with no friction present is
a well-posed problem, since this interval lies in the region of determination. In the case
of friction present (and of course in the case of a physical non-zero initial-condition) ˜τ

obviously gets wrong for all points under and near the characteristic lineη = const through
point (L̃, 0). However, due to the friction this error decreases exponentially with time (19)
and therefore is of negligible effect for timest̃ > L̃ + t̃q. Therefore the problem of calculating
pA in the time-interval [̃L + t̃q, T̃ − L̃] with friction present is also well posed.

On the left-hand side of Fig. 3 the regions in thex̃ − t̃-plane containing correct results for
the two cases of (a) a physical zero initial-condition and (b) an unknown physical non-zero
initial-condition are shown.

Now we come to the fundamental difference between time and space marching, which
is responsible for the main difficulty of the space marching method. The difference comes
from the friction term in (3).

A Von Neumann stability analysis shows that the space marching algorithm as presented
up to now is unstable. Physically speaking this instability is due to the fact that we are
calculating “against” ˜τ on the characteristic linesξ = const. In Fig. 3 one can easily see that
the information from point 1 is needed to calculatep̃3 andw̃3. Therefore artificial viscosity
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is added to stabilize the solution, which was done by replacingp̃ and w̃ by p̃d and w̃d

according to (22) after each spatial step,

p̃d(x̃, t̃) = p̃(x̃, t̃) + b · [ p̃(x̃, t̃ − 1̃t) − 2 · p̃(x̃, t̃) + p̃(x̃, t̃ + 1̃t)]
(22)

w̃d(x̃, t̃) = w̃(x̃, t̃) + b · [w̃(x̃, t̃ − 1̃t) − 2 · w̃(x̃, t̃) + w̃(x̃, t̃ + 1̃t)].

A Von Neumann stability analysis for the scheme with artificial viscosity (22), neglecting
the memory integral in (5), shows that the scheme becomes stable, ifb is chosen according
to

b ∈
[
bmin,

1

2

]
, bmin = 1

2

(
1− 1

16ψ1̃t +
√

1+ (16ψ1̃t)2

)
(23)

= 8ψ1̃t + O((ψ1̃t)2).

By implementing artificial viscosity (22) the amplification matrix of the numerically
undamped scheme is multiplied by the term in square brackets of[

1− 2b
(

1− cos
(

2π
f̃ n

f̃ s

))]L̃· f̃ s = 1− qn; f̃ s = 1
1̃t

, f̃ n = n
2T̃

,

(24)
n = 0, 1, . . . , T̃ · f̃ s.

f̃ s is the dimensionless sampling frequency. The exponentL̃ · f̃ s of the term in square
brackets of (24) is equal to the number of1̃x-steps necessary to cover the length of the
tube. The frequencies̃f n are the numerically relevant frequencies determined by the grid
spacing. At each̃1x-step the amplitude corresponding to a frequencyf̃ n is multiplied by
the term in square brackets of (24). This multiplication factor acts like a low pass filter,
which has no effect whenn = 0 and a maximum effect whenn = T̃ · f̃ s. The scheme can
be stabilized but becomes less accurate at the same time.qn is the relative error introduced
by (22) on the frequencỹf n. b should be chosen asb ≤ 0.25. Otherwise the multiplication
factor becomes negative at higher frequencies, which indicates that the high frequency
behaviour of (22) does not make sense any more.

Due to the low pass filter effect of (22) the sampling frequencyf̃ s has to be chosen large
enough compared to the maximum frequency of interestf̃ max. To estimate the necessary
sampling frequencỹf s we use (24) withb replaced by 8ψ/ f̃ s ≈ bmin according to (23) and
f̃ n replaced by the maximum frequency of interestf̃ max. Then the quadratic approximation
of (24) for 1/ f̃ s → 0 is (

f̃ s

f̃ max

)2

= 32π2ψ L̃

qmax
. (25)

For given f̃max, ψ , andL̃ and chosenqmax, which should beqmax ≈ 0.1, f̃ s can be estimated
using (25). Withf̃ s one can calculatebmin using (23). We propose to chooseb ≈ 10 · bmin.
With f̃ s andb the errorqn introduced by (22) on a frequencỹf n can be calculated with (24).

5. VERIFICATION OF THE METHOD

The quality of the method is shown in the following three subsections. First an experi-
mental verification demonstrates that the method works well with long and short tubes, that
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the memory integral is of importance, and that a physical non-zero initial-condition is no
serious problem. In the second subsection we show that the scheme converges to the correct
solution, as the stepsizes are refined. Finally we compare the scheme with the method of
Irwin, Cooper, and Girard [5], who first measured the transfer function experimentally and
then performed a numerical correction of measured pressure in the frequency domain.

All subsequent measurements were done with air under atmospheric conditions,p0 =
100 kPa,ρ0 = 1.19 kg/m3, a0 = 343 m/s, andν = 15.3 · 10−6 m2/s. In all figures of this
section relative pressure histories with respect to the ambient pressurep0 are shown.

5.1. Experimental Verification

The experimental setup consists of a pressure wave generator, a primary tube, the mea-
suring tube, and two pressure transducers. The pressure wave generator, which is described
in [6], produces a plane pressure wave, which propagates along the primary tube. The
measuring tube is connected with the primary tube in pointA. One pressure transducer is
positioned in the same cross-section of the primary tube as pointA to measurepA. The
second pressure transducer is positioned at the end of the measuring tube to measurepB.

d andV have to be determined accurately once for a certain tube-cavity configuration
by one calibration measurement, at whichpA andpB are measured. By several calibration
measurements we found out thatd andV do not change at all for one configuration later on.

In each of the Figs. 4 to 7 three curves are shown, namelypA calculated with the new
solution procedure, measured pressurepA, and measured pressurepB, which is the input
for the calculation. By comparing the calculated and measured pressurepA one can see the
quality of the method.

For all results shown in this subsection there wasV = 280 mm3. b= 0.1 was chosen in
the stability region of the scheme (23) (ψ and1̃t are given in the next two paragraphs).
The signals with a maximum frequency of interestfmax ≈ 350 Hz were sampled withfs =
20 kHz. This results in a value of 0.99879 for the term in square brackets of (24).

FIG. 4. Calculation and measurement: plastic tube,d = 1.20 mm,L = 2.50 m,V = 280 mm3, fs = 20 kHz;
with memory integral; physical zero initial-condition.
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FIG. 5. Calculation and measurement: plastic tube,d = 1.20 mm,L = 2.50 m,V = 280 mm3, fs = 20 kHz;
without memory integral; physical zero initial-condition.

In Fig. 4 the calculation for a plastic tube with flexible axis,L = 2.50 m andd = 1.20 mm
can be seen. The corresponding nondimensional parameters areL̃ = 2083, Ṽ = 162, ψ =
3.72 · 10−5, and1̃t = 14.3. qmax according to (24) withfn = fmax= 350 Hz amounts to
qmax= 16.14%. The average error is of the order of 1%. No influence ofD could be de-
tected forD/d ≈ 20. In Fig. 5 the result achieved with the data of the same measurement
but neglecting the memory integral term in (5) can be seen. The average error is of the order
of 10%. Comparing Figs. 4 and 5 one can easily see the importance of the memory integral

FIG. 6. Calculation and measurement: plastic tube,d = 1.20 mm,L = 2.50 m,V = 280 mm3, fs = 20 kHz;
with memory integral;pB cut off att = 40 ms.
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FIG. 7. Calculation and measurement: aluminum tube,d = 1.60 mm, L = 0.19 m, V = 280 mm3, fs =
20 kHz; with memory integral; physical zero initial-condition.

term in (5). Neglecting this term produces a scheme with little accuracy at high frequencies.
In Fig. 6 the signalpB is cut off att = 40 ms, which introduces a disturbance. Comparing
Figs. 4 and 6 one can see that the error introduced by the initial jump of the data has no
influence onpA after t ≈ 50 ms. Thereforetq,effective≈ 3 ms< tq = 27 ms from (19) with
q = 0.01 and (1).

In Fig. 7 the calculation done for an aluminum tube withL = 0.19 m andd = 1.60 mm
is shown. The corresponding nondimensional parameters areL̃ = 119, Ṽ = 68, ψ = 2.79 ·
10−5, and 1̃t = 10.7. This results inqmax= 1.34% according to (24) withfn = fmax=
350 Hz. The dominant frequency ofpB is the acoustic eigenfrequency of the system. The
new solution procedure works properly with such signals.

5.2. Numerical Convergence

Here it is shown that the difference between the numerical and correct solution tends to
zero as the stepsizes are refined. For this purpose the measurement from the above subsection
with the plastic tube withL = 2.50 m,d = 1.20 mm, andfs = 20 kHz is taken. Using only
every twentieth, tenth, and fourth point ofpB results in smaller frequenciesfs = 1 kHz, fs =
2 kHz, fs = 5 kHz and larger timesteps. Performing calculations with these data results in the
curves shown in Fig. 8. The sampling frequenciesfs = 1 kHz and fs = 2 kHz are definitely
too small and lead to an unsatisfactory behaviour at high frequencies. The result withfs =
5 kHz is good. The scheme converges to the correct solution as the stepsizes tend to zero.

5.3. Comparison with the Method of Irwin, Cooper, and Girard

Finally our method is compared with the method proposed by Irwin, Cooper, and Girard
[5]. Using this method [5] one measures the transfer function of the tubing system experi-
mentally and corrects the measured pressurepB numerically in the frequency domain using
the measured transfer function.
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FIG. 8. Convergence of the solution as stepsizes are refinedfs → ∞.

Our calculation is done using the measurement with the PVC tube withL = 10 ft= 3.05 m
taken from [5, Fig. 6]. The pressure scale is not specified, which poses no problem, since the
problem is linear. Volume and diameter are given in [5] to beV = 80 mm3 andd = 1.35 mm.
It turned out that the diameter must be chosend = 1.15 mm for our method to give a good
result. This is due to the fact that the roughness of the PVC tube results in an effective inner
diameter which is smaller than the macroscopically visible and measured diameter. That is
why a calibration measurement is necessary when our method is used (see above).

FIG. 9. Calculation done with data of Irwin, Cooper, and Girard. PVC tube,d = 1.15 mm, L = 3.05 m,
V = 80 mm3, fs = 1 kHz.
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pA calculated and measured andpB measured are shown in Fig. 9. The result is of
approximately the same quality as in [5] with the exception of the peak att = 437 ms. This
is most probably due to the fact that we had to get the data directly out of the figure, which
certainly caused a loss of information.

6. CONCLUSION

The new solution procedure presented here is a useful tool for calculating the pressure
pA at the entrance of a tube from the measured pressurepB at the end of the tube directly
in the time-domain. The average error of the scheme is of the order of 1%. The measuring
tube has constant circular cross-section without restrictors. The tube can be very long. High
frequencies pose no problem, if the sampling frequency is large enough. The method also
works correctly, if the fluid is not at rest at the beginning of the measurement, provided that
friction effects are high enough. The geometrical parameters have to be determined by one
calibration measurement.
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