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In this paper a new method for the determination of unsteady pressure with a
tubing system is shown. The conventional methods try either to optimize the fre-
quency behaviour of the tubing system by implementing restrictors or instantaneous
jumps in the cross-sectional area or to correct the measurement by using the transfer
function of the tubing system. The new method presented here simply uses a tube
with constant, circular cross-section and solves the governing fluid-mechanic equa-
tions in the time-domain by numerically propagating in the direction of the spatial
axis. (© 1998 Academic Press

1. INTRODUCTION

To measure time-varying pressures on the surface of models in wind tunnel experir
small pressure transducers with a sufficiently high eigenfrequency are flush-mounte
the modelsurface. If the number of measuring points of one model is too high, one us
uses several tubes which are connected with only one transducer successively duri
experiment by a scanivalve. In this paper we consider one of these measuring-tube:
point of the tube at the model surface is called pdwr entrance of the tube; the point
of the tube next to the pressure transducer is called f@mtend of the tube. The systernr
consisting of the measuring-tube and pressure transducer is called the tubing systern

Berg and Tijdeman [1] derived a method for calculating the transfer function of a tuk
system. The transfer function is defined as the ratio of the pressure at the end of the tub
the pressure at the entrance of the tube in the frequency domain. If the maximum freqt
of the pressure signal is small enough compared with the acoustic eigenfrequency ¢
tubing system, which corresponds to the first resonant peak of the transfer functior
pressure at the end and the pressure at the entrance of the tube are nearly identic
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The frequency range of this method is limited due to resonance effects occurring abo
certain frequency. To be able to measure signals with higher frequencies restrictors ca
implemented inside the tube [8, 5], thus flattening the first resonant peak of the tran
function. Methods to find an effective position of restrictors have been proposed by Gum
[3]and Holmes and Lewis [4]. Sockel and Ottitsch [7] published a paper in which the effe
of restrictors was calculated in the time-domain using the method of characteristics ir
usual time marching form. Another approach is the correction of the measured signal u:
the transfer function of the tubing system [5].

In contrastto [7] the direction of the numerical solution procedure is changed in this wo
By that way an accurate time-domain method is derived for calculating the pressure at
entrance of a tube from the measured pressure at the end of the tube for high frequel
without the need of restrictors.

In Section 2 the problem and goal of this paper are defined. In Section 3 the assu
tions made and the equations governing the problem are given. In Section 4 the nume
solution method is presented and difficulties arising from the type of the stated probl
are discussed, especially the problem of stability. In Section 5 comparisons between
merical and experimental results are shown. Finally the characteristics of the scheme
summarized in Section 6.

2. PROBLEM

In Fig. 1 the problem and chosen nomenclature can be seen. Two poarid B are
connected by a measuring-tube of lengtAnd constant, circular cross-section with interna
diameter. The bending diameter of the flexible tube-axi®isAt B the tube is ending in
a cylindrical cavity with internal volum& . Unsteady pressurga in A leads to unsteady
pressurgg in B. The maximum frequency of interestf is frax. Assuming small pressure
disturbances the pressupg shall be calculated from two given boundary condition8in
namely the measured pressyng and the boundary condition representing the cayty.
is given in discretized form with sampling frequenty

In addition to the application described above the method allows us to determine the
of pressures of several surfacepoints divided by the number of surfacepoints (pneun

pressure
object transducer

cavity V

L \ pB(l:) =
= known
P(t) = ?  measuring-
tube

FIG.1. Problem.
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averaging [8]). If each of these points is connected by tubes of the same length and diat
with one manifold, the method presented here yields exactly this result.

3. MATHEMATICAL FORMULATION

The geometrical assumptions concerning the tubelate< 1 andd/D « 1. The ge-
ometrical assumptions regarding the cavity are that the diameter and length of the ¢
are of the same ordev,*3/d ~ O(1) andV/3fax/a0 < 1, implying spatially uniform
pressurepg in the cavity.a is the speed of sound. The index 0 indicates the undisturb
state of the fluid. With respect to the fluid-flow we assume an ideal gas, isentropic condi
small pressure disturbances, and axisymmetric, laminar flow. We assume spatially uni
pressure over the tube cross-section. Energy loss@saatl B and gravity are neglected.
The pressure disturbances are much smaller than the modulus of elasticity of the tlibe
remains constant.

We define the times=0 andt =T as the beginning and the end of the time interva
during which pressure is measured. The spatial poirt® andx = L are identified with
the entrancéA and the end of the tube (see Fig. 1).

Two different initial-conditions are defined. The zero initial-condition is identical wif
the fluid being undisturbed faor= 0. The undisturbed state is definedpy= pp andw = 0
in the whole tubew is the mean velocity over the cross-section of the tube. The non-z
initial-condition implies that these values are arbitrarytferO and unknown. This is the
case if we start our recording &£ 0, but we started the experiment earlier, so that wawi
propagate in the systemtak O already.

We define the following dimensionless quantities (1), which are marked by ™,
g=X gy TG wo g PTR T

d d ag ao 084 033
7 denotes the wall shear stress inside the tylis;the density of the fluid.

Under the assumptions made above the problem can be formulated by using the
dimensional, linearized continuity (2), the one-dimensional, linearized momentum equé
(3), and the linearized boundary condition for the cavity (4),

ap )
=O 2
ot + X )
dw  ap
— =0 3
ot + X +4 3)
N VA df)
o — 4
W|g=L/d gy dt L/d 4)

7 is calculated using (5) which is derived in [10] and is valid for laminar, axisymmet
flow,

o aw(x u)

v is the kinematic viscosity of the fluid. The first term of Eq. (5) is formally identical wit
the wall shear stress in the case of laminar, steady flow (Hagen—Poiseuille). Therefor
second term of Eq. (5) is usually referred to as the unsteady friction term. It is a men
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integral with weighting functioW for past velocity change$V was derived by Zielke and
is given in [10] according to (6),

0.28209%7%° — 1.25+ 1.057855%°
+0.9375% + 0.396696° — 0.3515632 fors < 0.02

W(s(D)) = { exp(—26.3744%) + exp(—70.8493) (6)
+ exp(—1350198) + exp(—2189216s)
+ exp(—3225544%) fors > 0.02
with
= 4 V 7
s(t) = @t. (7

Combining (2) and (3) one obtains the wave equation with a dissipative term. We
that the problem is governed by three nondimensional physical parameters, namely
geometrical parametets’d =: L andV /d® =: V and the friction parametey (apd) =: V.

4. NUMERICAL SOLUTION METHOD

The system of equations is solved by applying the method of characteristics. Equati
(2) and (3) are transformed onto the characteristic varigbie& —t andn =% + 1. Along
the characteristic directions (8) and (9), which are straight lines, the compatibility conditic
(10) and (11) have to be satisfied,

dx
- = +1 (8)
dt & =const
dx
dt n =const
dp dﬂ;‘ -
— + — - _4I|E: t (10)
dt & =const dt & =const eons
dp dw
dt n =const dt n=const e
Rewriting (8) and (9) as difference equations one obtains
AX
— =1 12
=L (12)

where Ax and At stand for the distance of grid points in tie and f-direction. The
Courant number of the scheme is 1, therefore the shift condition is met exactly, wh
guarantees maximum accuracy.

By the discretization a nondimensional numerical parameter is introduced, namely
For practical reasonAt is chosen to be constant and equal the reciprocal of the sampli
frequency of the measured signsi = 1/ fs and thereforeAf =1/ fs.

The derivative in (4) is discretized by its first order backward difference expressic
Equation (5) is discretized as

kend
T(%,T) =4y <2w(>~q )+ wintey - detk> (13)
k=1
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with
kat
Winte, = / W) di, k=12, ... (14)
(k—=1)AF
and
dwdt, = (w (X, fj — (k= DAD — (X, fj — kAf))/Af, k=12, .... (15)

For the problems discussed h&end can be chosen d&nd ~ 30.

The calculation is done under the assumption of the zero initial-condition. This i
purely numerical assumption. We emphasize that this numerical initial-condition need
be identical with the physical initial-condition, which in most practical cases will be .
unknown non-zero initial-condition. We will show later that the dependence of the solut
on the physical initial-condition decreases with time rather rapidly, if friction effects &
high enough. This is the case for usual measuring-tubes. Therefore a physical non
initial-condition will pose no problem for our scheme.

4.1. Time Marching Algorithm

For a better understanding we first briefly explain the algorithm in its conventional fol
which is a time marching algorithm, although this does not work for our problem.

For “usual” hyperbolic problems the number of physical boundary conditions at e
boundary is equal to the number of characteristics pointing into the region, as time incre:
Thus the problem is well-posed [9]. In our case this would be one physical bounc
condition atA and one aB.

The principle of time marching in the — T-plane using the method of characteristics i
shown in Fig. 2. The flowfield is calculated in an explicit way by propagating numerica
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FIG. 2. Principle of time marching in th& — t-plane; regions containing correct results for (a) physical zer
initial-condition and (b) unknown physical non-zero initial-condition.
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in the direction of the time axis. The compatibility equations (10) and (11) can be written
difference equations (16) and (17), where the indices correspond to those shown in Fi

By — Py + 3 — 1 = —4AL - Ty (16)
By — P, — W3+ o = +4AL - To. (17)

With Egs. (16) and (17)p andw inside the duct are calculated. The physical boundar
conditions together with the compatibility conditions (17) and (16) are used for the det
mination of the unknowi and( at A and B, respectively.

Neglecting the memory integral in (5),diminishes all dynamic disturbances, i.e., dis-
turbances witif > 0, exponentially. We define a critical frequenﬁyit,

- 16y
fei= o (18)
Frequencies higher thaf‘;:rit are damped with exp{16y/f) as time increases. The tirfie
after which such a disturbance has decreased to lesgttiaes its initial amount can be

estimated,

In(q=)
16y

= (29)
For the cases discussed here the critical frequdngyis smaller than the maximum fre-
quency of interesf max Therefore it makes sense to use (19) for an estimation of thégime
of influence of disturbances, e.g., introduced by a discrepancy between the numerical
physical initial-conditiong = 0.01 is appropriate to estimaig

On the right-hand side of Fig. 2 the regions in #et-plane containing correct results for
the two cases of (a) a physical zero initial-condition and (b) an unknown physical non-z
initial-condition are shown. For usual tubing systeinis sufficiently small.

4.2. Space Marching Algorithm

For the problem discussed here the time marching algorithm does not work, since
have two boundary conditions Bt namely measured pressug and Eq. (4), and none at
A

The problem is solved by changing the direction of integration. The flowfield is calculat
by propagating numerically in the direction of the spatial axis. The principle of spa
marching in thex — f-plane using the method of characteristics is shown in Fig. 3.

The compatibility equations (10) and (11) can be written as difference equations (20)
(21), where the indices correspond to those shown in Fig. 3,

1~ Pty — 3= —4At-F (20)

el

3 — Py — a4y = +4At - 1. (21)

ot

The numerical procedure starts with the calculationvgfffom Pg using (4) and ofrg
using (5). After that the following two steps, defining an explicit scheme, are repeated u
Aiis reached: Firsh andw atX_ =X — Ax are calculated using (20) and (21). Secondly ~
at the new spatial coordinate is determined using (5).
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FIG. 3. Principle of space marching in tiie- f-plane; regions containing correct results for (a) physical zer
initial-condition and (b) unknown physical non-zero initial-condition.

It is obvious that the field of the calculated values is limited by the characteristic |
£ = const through pointi(, T). Therefore the signal a can be calculated only for times
within the interval [0 T — L]. By choosingT large enough this fact poses no problem.

As indicated above, on the axis= 0 the numerical initial-condition is the zero initial-
condition, without taking into account the physical initial-condition. In the case of a physi
non-zero initial-condition the scheme therefore produces wrong results at all paifs (
under the characteristic ling= const through pointi(, 0). With no friction present the
scheme gives the correct result fog for times in the interval [, T — L], since in this
case the above mentioned points in fhe t-plane are not needed at all. Mathematically
speaking the calculation @f, in the time-interval [, T — L] with no friction present is
a well-posed problem, since this interval lies in the region of determination. In the c
of friction present (and of course in the case of a physical non-zero initial-condition
obviously gets wrong for all points under and near the characteristig kneonst through
point (L, 0). However, due to the friction this error decreases exponentially with time (:
andthereforeis ofnegligible effectfortim’ias L + 3. Therefore the problem of calculating
pa in the time-interval [ + . T— L] with friction present is also well posed.

On the left-hand side of Fig. 3 the regions in the t-plane containing correct results for
the two cases of (a) a physical zero initial-condition and (b) an unknown physical non-:
initial-condition are shown.

Now we come to the fundamental difference between time and space marching, w
is responsible for the main difficulty of the space marching method. The difference co
from the friction term in (3).

A Von Neumann stability analysis shows that the space marching algorithm as prese
up to now is unstable. Physically speaking this instability is due to the fact that we
calculating “againstt 'on the characteristic lings= const. In Fig. 3 one can easily see tha
the information from point 1 is needed to calcul@teandws. Therefore artificial viscosity
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is added to stabilize the solution, which was done by replafirend v by Py and wy
according to (22) after each spatial step,
Pa%. D) = P& H+b-[pX, T— At) —2- P&, T + p(x, T+ At)]
(22)
g (%0 = D& H+b-[D& T—At) —2- 0%, D+ (& T+ At)].

A Von Neumann stability analysis for the scheme with artificial viscosity (22), neglectir
the memory integral in (5), shows that the scheme becomes stable,dhosen according

to
1 1 1

b bmin’ = ) bmin =-|1- ~ 23

e{ J 2( lWAHwﬂ+GWAW> 23)
— 8y At + O((Y AL)D).

By implementing artificial viscosity (22) the amplification matrix of the numerically
undamped scheme is multiplied by the term in square brackets of

1-20(1- cos(2 )| " c1-a  fo=d.fu=g

(24)

n=0,1,...,T-f.

f, is the dimensionless sampling frequency. The expohenf  of the term in square
brackets of (24) is equal to the number dk-steps necessary to cover the length of the
tube. The frequenciefsn are the numerically relevant frequencies determined by the gr
spacing. At eactA x-step the amplitude corresponding to a frequeﬁpys multiplied by
the term in square brackets of (24). This multiplication factor acts like a low pass filt
which has no effect when=0 and a maximum effect whan=T - f. The scheme can
be stabilized but becomes less accurate at the samedirisethe relative error introduced
by (22) on the frequencf/n. b should be chosen &s< 0.25. Otherwise the multiplication
factor becomes negative at higher frequencies, which indicates that the high freque
behaviour of (22) does not make sense any more.

Due to the low pass filter effect of (22) the sampling frequeﬁcyas to be chosen large
enough compared to the maximum frequency of intefgng; To estimate the necessary
sampling frequencfS we use (24) withb replaced by &/ fs ~ bmin according to (23) and
fn replaced by the maximum frequency of interéﬁgx Then the quadratic approximation
of (24) for 1/f — 0Oiis

(25)

(fs)z_szﬁwﬂ
: - .

max Omax

For givent .. ¥, andL and chosemax Which should bejmax~ 0.1, f~S can be estimated
using (25). Withf ¢ one can calculatbmi, using (23). We propose to chooser 10 - byin.
With f ;. andb the errom, introduced by (22) on a frequenéy, can be calculated with (24).

5. VERIFICATION OF THE METHOD

The quality of the method is shown in the following three subsections. First an expe
mental verification demonstrates that the method works well with long and short tubes,
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the memory integral is of importance, and that a physical non-zero initial-condition is
serious problem. In the second subsection we show that the scheme converges to the
solution, as the stepsizes are refined. Finally we compare the scheme with the meth
Irwin, Cooper, and Girard [5], who first measured the transfer function experimentally
then performed a numerical correction of measured pressure in the frequency domair
All subsequent measurements were done with air under atmospheric condijeas,
100 kPa,o0 =1.19 kg/n?#, ag =343 m/s, and> =15.3- 10°% m?/s. In all figures of this
section relative pressure histories with respect to the ambient prggsare shown.

5.1. Experimental Verification

The experimental setup consists of a pressure wave generator, a primary tube, the
suring tube, and two pressure transducers. The pressure wave generator, which is des
in [6], produces a plane pressure wave, which propagates along the primary tube.
measuring tube is connected with the primary tube in painDne pressure transducer is
positioned in the same cross-section of the primary tube as poiatmeasurepa. The
second pressure transducer is positioned at the end of the measuring tube to pgasur

d andV have to be determined accurately once for a certain tube-cavity configura
by one calibration measurement, at whighand pg are measured. By several calibratior
measurements we found out tlieindV do not change at all for one configuration later or

In each of the Figs. 4 to 7 three curves are shown, nampglgalculated with the new
solution procedure, measured presspgg and measured pressupg, which is the input
for the calculation. By comparing the calculated and measured preggome can see the
quality of the method.

For all results shown in this subsection there Was 280 mn¥. b= 0.1 was chosen in
the stability region of the scheme (23) @nd At are given in the next two paragraphs)
The signals with a maximum frequency of interégt, ~ 350 Hz were sampled witlfy =
20 kHz. This results in a value of 0.99879 for the term in square brackets of (24).

3 . .
o5 pA calculated —
) pA measured -
o | pB measured - |
1.5 .

p [kPa]
o
o O

1

—

3]
T

0 20 40 60 80 100
t [ms]

FIG. 4. Calculation and measurement: plastic tuthe; 1.20 mm,L =2.50 m,V =280 mn¥, f;=20 kHz;
with memory integral; physical zero initial-condition.
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FIG. 5. Calculation and measurement: plastic tutbe; 1.20 mm,L =2.50 m,V =280 mn¥, f;=20 kHz;
without memory integral; physical zero initial-condition.

In Fig. 4 the calculation for a plastic tube with flexible axis+=2.50 m andd = 1.20 mm
can be seen. The corresponding nondimensional parametelrs=a2683 V = 162, y =
3.72.10°5 and At =14.3. Omax according to (24) withf, = fax=350 Hz amounts to
Omax= 16.14%. The average error is of the order of 1%. No influenc® obuld be de-
tected forD/d ~ 20. In Fig. 5 the result achieved with the data of the same measurem
but neglecting the memory integral termin (5) can be seen. The average error is of the o
of 10%. Comparing Figs. 4 and 5 one can easily see the importance of the memory inte

3
25 & pA calculated —
' N pA meastired
2 Tt | B pB measured and cut off .-
15 :
— 1
> .
S o5
e 0 S : f\'k/""“"‘" e . .
VoM \ ' l
-0.5 \ -.1 [
1 |
-1.5 \;/\WJ ......
W
-2
° 20 40 60 80 100

t [ms]

FIG. 6. Calculation and measurement: plastic tuthe; 1.20 mm,L =2.50 m,V =280 mn¥, f;=20 kHz;
with memory integralpg cut off att =40 ms.
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FIG. 7. Calculation and measurement: aluminum tutes 1.60 mm, L =0.19 m, V =280 mn¥, f,=
20 kHz; with memory integral; physical zero initial-condition.

termin (5). Neglecting this term produces a scheme with little accuracy at high frequen
In Fig. 6 the signapg is cut off att =40 ms, which introduces a disturbance. Comparin
Figs. 4 and 6 one can see that the error introduced by the initial jump of the data ha
influence onpa aftert ~ 50 ms. Thereforé, efreciive® 3 MS < tq =27 ms from (19) with
g=0.01 and (2).

In Fig. 7 the calculation done for an aluminum tube wlith- 0.19 m andd = 1.60 mm
is shown. The corresponding nondimensional parameters ar&19, V = 68, ¢ =2.79-
105, and At =10.7. This results ingmax= 1.34% according to (24) withf, = fmax=
350 Hz. The dominant frequency pfg is the acoustic eigenfrequency of the system. Tr
new solution procedure works properly with such signals.

5.2. Numerical Convergence

Here it is shown that the difference between the numerical and correct solution tent
zero as the stepsizes are refined. For this purpose the measurement from the above sub
with the plastic tube with. =2.50 m,d = 1.20 mm, andfs = 20 kHz is taken. Using only
every twentieth, tenth, and fourth pointpf results in smaller frequencids= 1 kHz, fs =
2kHz, fs=5kHz and larger timesteps. Performing calculations with these data results ir
curves shown in Fig. 8. The sampling frequendigs:- 1 kHz andf; = 2 kHz are definitely
too small and lead to an unsatisfactory behaviour at high frequencies. The resul with
5 kHz is good. The scheme converges to the correct solution as the stepsizes tend to

5.3. Comparison with the Method of Irwin, Cooper, and Girard

Finally our method is compared with the method proposed by Irwin, Cooper, and Git
[5]. Using this method [5] one measures the transfer function of the tubing system exf
mentally and corrects the measured presggraumerically in the frequency domain using
the measured transfer function.
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3
fs= 1kHz —
25 Y 1 T —
2 fa= 5kHz .o
1.5
1

p [kPa]
o
o u

0 20 40 60 80 100
t [ms]

FIG. 8. Convergence of the solution as stepsizes are reffged oco.

Our calculation is done using the measurementwith the PVC tube withO ft=3.05m
taken from [5, Fig. 6]. The pressure scale is not specified, which poses no problem, since
problem is linear. Volume and diameter are given in [5] t&/be 80 mn? andd = 1.35 mm.

It turned out that the diameter must be choden1.15 mm for our method to give a good
result. This is due to the fact that the roughness of the PVC tube results in an effective ir
diameter which is smaller than the macroscopically visible and measured diameter. Th
why a calibration measurement is necessary when our method is used (see above).

1.5 r
pA calculated —
1 pA measured. - i
KB measured -
© W YN :
; AN
2 SV N Rl
S ’ ’ .' ) ’
k)
e -1
-15
-2
0 200 400 600 800 1000

t [ms]

FIG. 9. Calculation done with data of Irwin, Cooper, and Girard. PVC tube;1.15 mm,L =3.05 m,
V =80 mn?, fs=1kHz.
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pa calculated and measured apg measured are shown in Fig. 9. The result is ¢
approximately the same quality as in [5] with the exception of the petid37 ms. This
is most probably due to the fact that we had to get the data directly out of the figure, wi
certainly caused a loss of information.

6. CONCLUSION

The new solution procedure presented here is a useful tool for calculating the pres
pa at the entrance of a tube from the measured pregssia the end of the tube directly
in the time-domain. The average error of the scheme is of the order of 1%. The measit
tube has constant circular cross-section without restrictors. The tube can be very long.
frequencies pose no problem, if the sampling frequency is large enough. The methoc
works correctly, if the fluid is not at rest at the beginning of the measurement, provided
friction effects are high enough. The geometrical parameters have to be determined b
calibration measurement.
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